Performance Improvement of Radar Target Classification Using UWB Measured Signals
نویسندگان
چکیده
منابع مشابه
Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملDistance Estimation for Radar Systems Using DS-UWB Signals
In this paper, we propose a distance estimation scheme for radar systems using direct sequence ultra wideband (DS-UWB) signals. The proposed distance estimation scheme averages out the noise by accumulating the correlator outputs of the radar, and thus, helps the radar to employ a short-length DS-UWB signal reducing the correlation processing time. Numerical results confirm that the proposed di...
متن کاملGeneral Linear Chirplet Transform and Radar Target Classification
In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...
متن کاملPerformance of Synthetic Neural Network Classification of Noisy Radar Signals
This study evaluates the performance of the multilayer-perceptron and the frequency-sensitive competitive learning network in identifying five commercial aircraft from radar backscatter measurements. The performance of the neural network classifiers is compared with that of the nearest-neighbor and maximum-likelihood classifiers. Our results indicate that for this problem, the neural network cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Korean Institute of Electromagnetic Engineering and Science
سال: 2011
ISSN: 1226-3133
DOI: 10.5515/kjkiees.2011.22.10.981